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Abstract

Chemisorbed overlayers on single crystal surfaces can in

many cases be considered as lattice gases, The general features

of temperature-coverage phase diagrams resulting from attractive
or repulsive adatom interactions in such systems are discussed

in analogy with binary solid solutions. The effect of surface

and overlayer defects on the determination of phase boundaries

is considered. The use of low-energy electron diffraction (LEED)

to study surface defects and overlayer phase diagrams is briefly

summarized.

Li



I. Introduction

Both because of their fundamental theoretical interest and because

of their promise in providing a better understanding of adatom inter-

actions, phase transitions in overlayers adsorbed on surfaces have

received increasing attention in recent years. Theoretical interest

in two-dimensional systems centers around symmetry classification and

determination of critical properties. (1-5) Because there sometimes are

no analogues in magnetism or in three-dimensional systems, two-dimensional

systems provide the opportunity to study new phenomena. Several

experimental methods have been applied (6 -10) in the study of adsorbed

layers. The majority of experiments have been done on physisorption systems,

with an emphasis on determining the phase diagram and critical exponents.

Studies of chemisorption systems in which phase diagrams have been

determined over a range of coverages are much fewer.(lOlS) Knowledge

of the thermodynamics of such systems may be especially fruitful, however.

A force law for the adatom-adatom interaction in chemisorption, because

it includes a large substrate-modulated oscillatory contribution, is

difficult to establish. Experimental input on the magnitudes of vdrious

interactions can aid in its determination. Furthermore, a number of

surface phenomena, such as chemisorption, surface chemical kinetics,

diffusion, oxidation and passivation, and epitaxy and crystal growth,

depend on adatom chemical interactions.

Chemisorption systems frequently can be considered as two-dimensional

lattice gases, in that the adsorbate-substrate potential is strong relative

to the adsorbate-adsorbate interaction, forcing the adsorbed atoms to sit

at discrete sites. In some cases, for example 0 on W (110), this
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adsorbate-substrate binding energy is so strong relative to the

diffusional barrier that the vapor pressure of adsorbed atoms above

the surface is very small in the temperature range of the phase

transitions. If in addition the solubility of adatoms into the

bulk (which can be considered in similar terms as adsorption (16) ) is

also small, the adsorption system can be considered to be "closed"

(i.e., the chemical potential of the surface phase is different from that

of the 3-D vapor phase or the 3-D "gas" dissolved into the bulk, and

there is no thermodynamic equilibrium between them), and the surface

phase can be considered as one of constant coverage as other thermo-

dynamic variables such as the temperature are changed.

In such situations, it is possible to make some simple analogies

with thermodynamics of bulk binary alloys. The purpose of this review is

to present these analogies in a more or less pedagogical manner, and to

discuss the implications of the existence of substrate surface defects

on the interpretation of an overlayer phase diagram in terms of adatom

interaction energies.

In the next section, we begin with a discussion of the main simple

features of binary alloys that exhibit either complete solubility or

phase separation. We relate this to the formation of superlattices of

adsorbed atoms ("island" formation). In the third section we consider

surface defects and their effect on the phase diagram. In the fourth

section we consider very briefly the use of low-energy electron diffraction

(LEED) to measure phase transitions in a chemisorbed overlayer, and

conclude with a few summarizing remarks.
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II. Phase Formation in Binary Systems

A. Bulk Alloys

The "picture" of the thermodynamics of a material is usually a

phase diagram, which represents a cut through the n-dimensional space

of the chemical potential or partial molar free energy, G, vs. thermo-

dynamic variables, common ones being temperature, pressure, volume, and

relative concentration. The phase diagram represents a picture of the

most stable phases of all possible ones at given values of the thermodynamic

variables, and lines on a phase diagram represent the set of all values of

the thermodynamic variables where a component of the system can exist in more
than one phase with the same chemical
potential. The free energy must always be continuous across a phase

boundary. Discontinuities in the derivatives of G with respect to the

thermodynamic variables define whether a phase transition is first, second,

or higher - order.

Because of its dependence on the enthalpy, G depends on interactions

at the microscopic level. If a relation between interaction energies

and enthalpy can be established, it is in principle possible to extract

interaction energies by fitting the boundaries in a phase diagram.

If one considers a binary system, for example the solution of

material A into material B, one can establish some simple relations

between the nature of the interaction and features of the phase diagram.

We shall consider in particular the temperature-concentration phase

(17)diagram. Assuming that the interaction energies in this system are

limited to nearest neighbors only, one can write three terms, E AA, BB'

and cAB representing respectively the interaction energies between two A

atoms, two B atoms, and an A and a B atom. Then the interaction enthalpy

can be written as (quasichemical model(1 7))
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AHm PAB ['AB - 1/2 ('AA +EBB)]$ (1)

where PAB is a pair distribution function, which for a regular solution model(17)

is equal to the product of the concentrations of A and B. The heat of mixing,

AHm , will be negative when there is a relative net attraction between A and B

atoms because 1EABI > 11/2 (FAA + EBB)1. In this situation A atoms and B

atoms will prefer to be close to each other, and upon mixing A and B, a

random solution of A and B will result over most of the temperature-concentration

range. An ordered AB alloy is possible only over a very limited concentration

range, as shown in Fig. la. In the opposite case, where A-A and B-B bonds are

preferred over A-B bonds, AH will be positive, and phase separation into a and
m

B phases will occur, Fig. lb.

An analysis of even these simple phase diagrams yields much information.

For a continuous solid solution, A substitutes freely for B from pure B to
0

pure A. In the case of phase separation, at T = OK two pure phases A and B

exist and there is no mixing. Atfinite temperatures, since the free energy of

mixing AGm depends on the mixing entropy as well as the mixing enthalpy,

AGm = AHm - TASm' (2)

and since both T and AS are always positive for T > OK, the entropy termm

tends to make a disordered phase (random solid solution) more stable as the

temperature increases. Hence when there is phase separation, phases a and a,

consisting respectively of a matrix of A with B dissolved in it and vice

versa, become stable over increasing concentration ranges as the temperature

is raised, and the two-phase region becomes correspondingly smaller as

indicated by the inward motion of the phase boundaries. At some critical

temperature and concentration the difference between a and a disappears
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and the system becomes a single phase above this temperature.

The amount of each phase and its composition can be directly determined

from the phase diagram. For any temperature T and composition XB in a

single-phase region, the amount of the phase is always equal to the total

amount of material and its composition is uniform and equal to XB of B

and (l-XB) of A. For any temperature T' and composition X6 that fall

into a two-phase region, the compositions of the two phases are given by

the intersections X(S ) (a, T) and xs)(a, T') of the isotherm at T' with

the phase boundaries. The amounts of the phases a and a present at the

condition XB, T' are given by the lever rule; (17) e.g., the amount ofX' _XB~ (,.c(, Tin)

at Xi equals U = x = B B (3)

As can be seen from the discussion of enthalpy and entropy, phase separation

must occur at some (low) temperature if A-A or B-B bonds are preferred

over A-B bonds. At sufficiently high temperatures the system will always

reduce to a single phase (be it only the gas phase). Of course, in

actual situations many more complex intermediate phases are possible.

B. Ordering of an Adsorbed Overlayer

We assume adsorption of a gas randomly into lattice sites on a

perfect surface of infinite lateral extent. This system can be immediately

considered in terms of the binary alloy just discussed if the adatoms

are identified with material B, and the vacant lattice sites with material

A. We thus can draw a temperature - composition diagram, with the

"concentration of B" now replaced by "coverage".

The simple features of phase separation or random solid solution

formation carry through directly. If both the barriers to evaporation

and solution of the adsorbate into the bulk are large relative to the
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barriers for diffusion, thenat sufficiently high temperatures (corresponding

to the dominance of the mixing entropy term over the enthalpy of mixing

noted earlier) the adsorbate will exist as a single phase, a random lattice

gas. Although the adatoms are still preferentially bound in lattice

sites the probability of hopping from one site to another in the surface is

large.

If no lateral interactions are present, corresponding to zero enthalpy

of mixing, a random solution will persist at all temperatures. At low coverages

this will be a random solution of adatoms in the empty lattice sites ("lattice

vapor") while at high coverages it will be a random solution of vacancies

(empty lattice sites) in an ordered p(lxl) structure that is produced by the

increase in "pressure" arising from the high coverage.

Interactions, however, invariably exist, and these can be either net

attractive or net repulsive. (18 ) Consider as the first case a lattice gas

with nearest-neighbor attraction and all other interactions equal to zero.

Since there is a net attraction, the adatoms will form an ordered p(lxl) phase.

In terms of the discussion on binary alloys, if BB : ad-ad' EAA = Cvac-vac'

and CAB = Evac-ad are respectively the adatom-adatom, the vacancy-vacancy, and

the adatom-vacancy interaction potentials, then in simplest terms

11/2 (cAA + EBB)I > 1EABI and phase separation will occur, at least at
0

T = OK, and Fig. lb is directly applicable. This is the well-known phenomenon

of "island formation" in overlayers, although this is a misnomer, since the

equilibrium state will consist of only one ordered p(lxl) phase and one

nearly empty "sea". The phase boundaries represent the locus of T and 0

for the coexistence of the p(lxl) and the disordered phase, the relative

amounts of these at any coverage being given again by the lever rule. As

before, with increasing temperature the single-phase regions grow at the

expense of the two-phase region because of the entropy term, with these
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single-phase regions containing more and more "solute" of the opposite

species. On the low-coverage side the coverage at the phase boundary for

any T can be considered as the two-dimensional vapor pressure of the

ordered p(lxl) region at that T, or equivalently, the saturation solubility

of adatoms in the "sea" at that T. By anology, the high-coverage phase

boundary represents the saturation solubility of vacancies in the ordered

p(xl) phase.

In a classic paper, Lee and Yang(19) provided an analytical solution for

two-dimensional binary systems by transforming the magnetic Ising model to

the lattice gas model, using a nearest-neighbor attractive interaction, e.

For an adsorbed layer E is identified with Ead ad , the attractive interaction

energy that leads to formation of an ordered structure, and the relation

between coverage and the interaction energy is(20)

41/[2e(>l/2,T) + 1] = -[26(<1/2,T) + 1] = [1 - l/sinh (c/2 kT)] I/8, (4)

which gives a critical coverage 0c = 1/2 0saturation, and a critical temp-

erature Tc directly related to the attractive interaction by the well-known

Onsager solution. (21) Their results are shown schematically in Fig. 2.

The phase transitions are first-order except at ec, where it is second-order.

Although p(lxl) phases are interesting in their own right, e.g. in

crystal growth, chemisorbed-overlayer superlatticeswith larger unit meshes

are frequently observed. The above analysis can be easily extended (at

least in an approximate way)(20) to non-p(lxl) overlayers by redefining the

lattice ("prefacing" transformation (22) ) so that there are again no
0

unoccupied sites for a (saturation-coverage, OK) superlattice. This is

illustrated in Fig. 3. For example, a c(2x2) structure indexed relative to

a square substrate lattice will form a p(lxl) structure indexed relative to

a lattice of bridge-bonded sites. Similarly, for a p(2x2) layer, a p(lxl)
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structure can be obtained with a prefacing transformation using four-fold sites.

The Lee-Yang model (19) then applies directly to any superlattice that

can be transformed to a p(Ixl) structure. The model will give a critical

point at ec = 1/2 asat for that superlattice structure. In the absence of

symmetry breaking (20)(discussed below), the phase boundaries will be

symmetric around 0c If a single attractive interaction is assumed, it can

be solved for exactly by fitting Eq. (4) to the phase boundaries.(20)

In summary, if a net attractive interaction exists between adatoms,

phase separation will occur below some temperature for coverages below

saturation coverage. This temperature is a rough measure of the net

attractive interaction. Additionally, the existence of a phase at a coverage

below that at which it can exist as a single phase containing vacancies implies

phase separation and hence a net attractive interaction.

Repulsive interactions between adatoms are the analogue of preferential

A-B bonding in alloys, in that an adatom prefers to have vacancies next to

it rather than other adatoms. As a result, the adsorbed layer attempts to

form a single phase (a "solution" of adatoms and vacancies) for as large a

range of coverage as the repulsion is able to support. For non-p(lxl)

superlattices repulsive interactions are, of course, present between near-

neighbors and also perhaps for larger distances, but the net interaction is

attractive. In some cases the interaction may appear completely repulsive,

although it seems in general reasonable that there be at least a weak

attraction, so that at sufficiently low temperatures a two-phase region will

again form.

Binder and Landau (2 3) have considered a square lattice with a nearest-

neighbor repulsion, Jn-n and a next-nearest neighbor interaction J n-n-n that

can be attractive, repulsive, or zero. Figure 4 shows their results for Jn-n-n
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attractive and zero. For J n-n-n attractive they find, as before, a two-phase

region centered about ec = 1/2 esa t, where for this structure asa t = 1/2.

This two-phase region shrinks to zero when Jn-n-n goes to zero, and only a

single phase is stable. It should be noted that in the former case, a c(2x2)

structure [covering part of the surface] will appear already at very low

coverage [giving rise to a LEED pattern], whereas in the latter case, a

c(2x2) structure does not appear until a = .35; this point is analogous to

a percolation threshhold. (1 ) When the c(2x2) phase does form for the repulsive

case, it covers the whole surface, but contains a sufficient number of vacancies

to give the proper coverage. Below 0 n .35, although there may be fluctuations

with short-range order, no long-range order is possible.

The maximum temperature at which the one-phase region is stable is

determined by the strength of the repulsive interaction. If this were

infinite, [e.g. in a p(lxl) layer constrained to remain on lattice sites]

this temperature would also be infinite. (Actually other processes take

place, such as desorption or occupation of sites out of the two-dimensional

layer). For finite repulsions, the transition at esat for a given non-p(lxl)

layer represents a true order-disorder transition into the unoccupied repulsive

sites,with a transition temperature determined by the potential energy differ-

ence between the attractive and repulsive sites. At lower than saturation

coverage, it is easier for the system to transform, because of the vacancies

that already exist in the ordered structure.

The transformation at 0sa t is second-order, and the transformations

below esat out of the one-phase region t the lattice vapor phase are most

likely also second-order, as shown in Fig. 4. The point where the phase

boundaries meet is a tri- or multicritical point.

Before leaving this simple treatment of the main features of an adsorbed-

layer phase diagram, several things should be noted. One, the phase diagram
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in Fig. 4 is shown symmetric about 6sa t* This is never the case. As more

atoms are forced into the lattice than are required for saturation, because of

three-body repulsions the ordered structure quickly becomes less stable and

the system begins to separate into a higher-density ordered (or disordered)

phase and the initial saturated phase. This simply says that the equilibrium

concentration of "interstitials" in a phase at a given T is less than that

of vacancies, analogous again to bulk alloys. The strength of three-body

interactions can in some cases be determined from the asymmetry of the phase

diagram. (24)

Second, it is of course possible to have saturation coverages at other

than 0 = 1/2 [e.g. 0 = 1/3 for (Y'3 x V7) in fcc (111)], and it is as a result

possible to have exceedingly complex phase diagrams as one passes from one

ordered phase to another. This is demonstrated succinctly by the model

calculations of Berker and Ostlund, (25) who consider adsorption on a hexagonal

face and vary the strength of different interactions, keeping the nearest-

neighbor interaction infinitely repulsive. They are able to produce a variety

of phase diagrams and two ordered phases; as a result of their infinite

nearest-neighbor repulsion, the (V3 x 4) structure is the densest one allowed,

but a p(2x2) phase is produced at lower coverages.

Experimentally, several phase diagrams for lattice gas systems have been

determined in recent years, at least over part of the total range of coverages.

These include S/Cu(ll0),(l0a) S/Au(ll0),(l0b) S/Pt(lll),(lOc) O/W(II0( 12)

H/Mo(001 (15a) H/W(l00),( 15b) O/Ni(lll),( 14 ) and H/Ni(lll).( 13) All of these

except the last show two-phase regions indicating net attractive interactions.

It is not known whether H/Ni(lll) represents a true case of repulsive or

zero interactions at all distances, or whether at a lower temperature a two-

phase region exists.



III. Surface Defects
II

In discussing the thermodynamics of adsorbed layers it is generally

assumed that both the substrate and the overlayer are free of defects that

limit the long-range order in the overlayer. This is, of course, almost

never the case, and anything that affects long-range order of the overlayer

may affect the stability of phases. This is principally because of edge or

boundary energy in the adsorbed layer or the potential associated with a sub-

strate defect. The nature of a substrate defect (i.e., does it raise or

lower the free energy of the overlayer?) is also important. Single-phase

and two-phase regions may be affected in different ways. Since one

of the aims of determining phase diagrams in chemisorbed systems is extracting

interaction energies, it is important to recognize how the phase boundaries

may be affected by the existence of defects.

We consider three types of extended defects, mosaic structure in the

substrate, steps on the substrate, and antiphase domains in the overlayer.

More complex situations can exist, of course, such as antiphase domains in

reconstructed substrates or any combination of the above defects, but these

three serve to illustrate the difficulties inherent in interpreting phase

diagrams assuming long range order.

A mosaic structure is a small orientational or translational misalign-

ment of crystalline regions of finite size. No phase correlations exist

between different crystallites: the surface acts like a collection of

independent small surfaces. (In a diffraction experiment, one would

observe a physical or "particle-size" broadening of the reflections).

A step on a surface, on the other hand, represents a defect in which

the phase correlation between one region (a "terrace") and another is

preserved. In a diffraction experiment, this manifests itself in an

alternate broadening (or splitting) and narrowing of reflections.(26)
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For both types of defects, a diffusional barrier is likely to exist at

the edge of the ordered region, as shown in Fig. 5. The existence of such

a barrier can be explained(27) in terms of a reduced coordination for an

adsorbate atom as it reaches the edge, and thus a reflection toward the

interior of the terrace. Because of the increased coordination at the

lower edge of the step, there is a local potential minimum that acts as

a nucleation site. Such a local minimum may also exist at the top of the

step (and hence also for the mosaic crystallite surfaces), as indicated

by field ion microscopy measurements of adatom diffusion. (27)

In any case, if the diffusional barriers at the edge are high relative

to the diffusional barriers away from the edge, adatoms initially adsorbed

on a terrace or mosaic surface are constrained to remain there, and for all

intents each terrace or mosaic surface forms its own small thermodynamic

system or "pot". (28) (If the diffusional barrier is higher than the

desorption or solution barrier, the isolation is, of course, absolute).

For such finite systems, island boundary energies, defect potentials,

and limited correlation lengths become important. Considering first the

two-phase region, if one makes the simplest assumption of random adsorption and

neglects any potential energy contribution due to adsorption at a substrate

defect, then each "pot" will contain one ordered region of limited size and

one vapor region of limited size. As opposed to a macroscopic ordered phase,

in each of these islands (as they now really are) the boundary-to-area

ratio becomes large, and the boundry energy can be a significant fraction of

the total free energy. Because it is positive it makes the ordered region

less stable, i.e., the vapor phase will grow at the expense of the island.

A quantitative measure of the magnitude of this effect can be obtained

from the Thomson-Freundlich equation,(17) which relates the solubility of
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small particles to their size, surface tension, and mass. Assuming this

equation can be used directly for two dimensional phases by relating the

boundary-to-area ratio of an island to the surface-to-volume ratio of a

particle, a typical adsorbed gas may have a roughly 20-30% greater solubility than a

macroscopic ordered region, i.e., the low-coverage phase boundary moves to

the right, increasing the stability region of the vapor phase. (29) In

fact,the Iower thecovemge(and hence the smaller the islands), the greater

the deviation, as the boundary energy takes on increasing importance.

Are regions as small as this realistic on surfaces? Certainly they

are as far as steps are concerned. A surface oriented to within 1/20 of a

given direction will have a step roughly every 40 to 50 atoms. Sputtering

and annealing generally increase the surface damage. A mosaic structure

with domains as small as this is not likely for crystals grown from a melt

or for recrystallized samples, but epitaxially grown films may contain very

small domain sizes. Recently an average domain size of -75A was measured

on a Ag(lll) film epitaxially grown on mica.
(30)

Indications of the boundary energy dependence of the adsorbed island

size as a function of coverage were seen for 0 on W (ll0).(28, 31)

A more complicated model would take into account the potential energy

of adsorption of a substrate defect. For a step, the most favorable sites

would be at the lower edge. Nucleation sites, of course, lower the total

energy and thus make the ordered region more stable. Since potontia.ls

associated with defects are likely to be short-range, they should be important

only for a very small islands. One can imagine, however, pathological cases

in which a strong defect-associated potential along two edges of a step forces

an island to grow with a concave boundary, making the island more stable

than an infinite one.



The implications in a one-phase region are less simple. If one has a

finite-size region, there will be only limited correlation lengths. Without

a defect potential there may not be any effect on the phase boundary. Assuming

a nucleation potential at one edge of a finite region but not on the other,

Berker and Ostlund (32 ) have shown that near the temperatures and coverages

in the phase diagram where the second-order boundary meets the first-order

boundary, the system attempts to phase separate (because of the existence of

the ordered phase at the edge with the defects but not the other) at temperatures

and coverages where an infinite system would already have formed a single phase.

Thus, the two-phase region broadens and moves up in temperature, and there is

no sharp multicritical point.

Finally, in overlayers with a non-p(lxl) superlattice, translation or

rotational antiphase domains are possible and in fact likely. Phase correlations

are obviously preserved in going from one domain to another. In a diffraction

experiment, the spot broadens because of this antiphase interference effect.

Because it is very difficult to remove domain boundaries, even for a

perfect substrate, oae must consider that the domain boundary energy is

included in any measurement of the thermodynamic properties of the over-

layer. For a substrate with defects, there is, of course, no hope of

removing different translational or rotational domains, although it is

possible to nucleate only one rotational domain by careful preparation of

the surface. (33) However, since each "pot" on the surface is expected to

contain only one domain, and the pots are assumed not to interact thermo-

dynamically, antiphase domains are not important for substrate surfaces

with a reasonable step density or small mosaic size.

Because of the domain boundary energy, the effect of antiphase domains

on a two-phase region is the same as for finite island size, i.e., an

increase in the solubility of the ordered adatom regions in the vacancy "sea"

at a given temperature, and thus a decrease in the extent of the two-phase
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region. In a one-phase region, the effect is less clear, but will probably

also be the same as that of a finite size.
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IV. Measurement of Phase Diagrams and Surface Defects

Space does not permit a detailed treatment of methods to measure

the properties discussed in this review. It is clear, however, that

diffraction techniques lead the way, because of the possibility of directly

observing the pair correlation function. The technique most commonly used

for observation of ordered chemisorbed phases and transitions in these

is LEED. By measuring the decay of the peak intensity of superlattice

reflections with temperature as well as the angular distribution of

intensity in a superlattice reflection with temperature, the phase diagram

of the overlayer can be established.(l0-15) Defects on surfaces can also

be readily studied by LEED. Major emphasis has been placed on steps,( 26)

but recently it has also been possible to determine mosaic structure(Io)

in surfaces and to approach a quantitative description of antiphase domains.

However, there remains a large number of difficulties, especially in

the interpretation of the peak intensity measured in LEED, and its

relation to the properties that one wishes to observe. For example, the

interpretation of the intensity decay is different for a transition out of

a two-phase region into the vapor phase than it is out of a one-phase region.

The simplest conceptually is the transition at saturation coverage for a

given overlayer structure. Here the transition is a true order-disorder

transition, with adatoms moving from the'torrect"sites to substitutional

"wrong" sites. A measurement of the decay of the superlattice beam peak

intensity is a measure of the order parameter, and in the ideal situation

(i.e., for an ideal instrument and a perfectly ordered overlayer and defect-

free substrate) it should be possible to obtain the transition temperature

from the extrapolation of the inflection point to zero intensity, as

well as correct critical exponents, and to classify the nature of the

transition.(2, 3) In practice, this is confounded by instrumental effects,

in particular the detector width, which typically allows a large degree
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of diffuse scattering to enter any measurement of the peak intensity. ( 35 )

In a limit of a detector the size of the two-dimensional Brillouin zone, no

intensity decay is observed as one goes through a phase transition. Additionally

substrate defects and antiphase domains can profoundly affect the intensity decay

even for a perfect instrument. Thus, if either antiphase domain boundaries exist

or if steps exist and the data are not taken at the minimum in the angular widths

as a function of energy,(26) the peak intensity will decay more slowly than it

would for a perfect layer.

These problems can be surmounted by measuring the relevant parameters,

of course. Thus the critical scattering can be measured or estimated, and steps

and domain boundaries can be estimated. It is, of course, possible to extract

"critical exponents" from any intensity decay, but without such considerations

the results are probably not reliable. Recent attempts to extract critical

exponents apparently have met with this difficulty. ( 35 - 37 )

Away from saturation coverage, the measurement of the peak intensity has a

different meaning. In a two-phase region, the peak intensity comes only from the

ordered regions (except for a gas-scattering background that is small at low

temperature). A measurement of the intensity J, versus temperature then simply

measures the disappearance or dissolution of the ordered phase. The shape of

the J vs. T curve is determined by the shape of the phase boundary. For a

temperature range where this phase boundary is nearly vertical, the intensity

will not drop with temperature (other than due to the Debye-Waller factor),

because the solubility remains constant. Conversely, when the phase boundary

becomes nearly flat, the intensity will decay very rapidly with temperature.

If a phase boundary had a constant slope, the intensity would decay as the

square of this slope. If one takes the Lee-Yang model as an example of a two-

phase boundary, it is easy to see why the temperature decay J vs. T frequently

look similar to what is observed at saturation coverage. However, the

major difference is that the phase boundary should be put at the temperature
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where the intensity goes to zero rather than at an inflection point. This

is very difficult to measure because at this temperature all atoms are in the

disordered phase, and this "vapor" gives a gas scattering background and

can be quite large.

The angular width of diffracted beams also gives information about the

ordering on a surface, and may help to distinguish different situations. In

a one-phase region, the ordered phase should always be as large as that allowed

by substrate heterogeneities. Thus, if the substrate domains or terraces are

small, the spots should be broad, but there should be no coverage dependence

to the angular width of diffraction spots, and with increasing temperature

they should show a very sudden broadening at the phase boundary, due to the

existence of only short-range order above the transition temperature.

In a two-phase region, the angular widths should reflect the size of the

ordered region. If the substrate is perfect, there should be no dependence

of angular width on coverage except at very low coverages. This is because,

if equilibrium is assumed, there will be only one large ordered phase, which

even for fractional percent coverages is larger than the resolving power

of the LEED instrument. (34 ) It is not likely that the diffracted intensity

is sufficient to observe such low coverages. If the substrate contains defects,

and the adatoms are assumed to be randomly distributed in the "pots", a beam

broadening will be observed at low coverages as many small islands form. There

should be a narrowing of beams with increasing coverage at fixed temperature,

as islands in each "pot" grow. This has been observed.(28) There should also

be a temperature dependence. Increasing the temperature at a fixed coverage

should lead to beam broadening, as islands within each "pot" evaporate into

the "sea". This has also been observed.
(12 )
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Beam broadening can be used to distinguish between different models of

filling terraces or domains. If instead of random filling, some pots are

completely filled (because they have perhaps favorable defect sites)

while others remain essentially empty, the coverage dependence of the beam

broadening vanishes, the broadening being given at all coverages very

nearly by the finite-size effect of the substrate.

All of this assumes true equilibrium. There may be quite long-lived

metastable states that complicate this simple picture. Thus islands may

form even on perfect surfaces if there are a large number of defect

sites for adsorption and diffusion rates are slow.

Finally, there are more complex situations, such as transitions from

a two-phase region to a one-phase region with the same ordered structure,

transitions from a one-phase region to a vapor at less than saturation

coverage, and transitions from a mixture of two ordered phases to a

disordered one. There are so far no measurements of these types, although

it should be possible from a careful analysis of the LEED intensity profiles

and their temperature dependence to determine accurate phase boundaries for

these cases also.

We have not considered cases of registered-to-incommensurate

transitions, which can be studied using LEED,(
38) but which can't be

described with the simple analogies discussed here.



20

V. Conclusions

We have discussed in this review the main features of simple phase

diagrams in overlayers that can be considered lattice gas systems. By

analogy with the thermodynamics of bulk binary alloys, we have illustrated

the relation of the overlayer structure and the coverage

if simple net attractive or repulsive interactions are assumed. Actual [.

overlayer systems may, of course, have more complex interactions, but if

these lead to additional features in the phase diagram, it should be possible

to extract the interactions by fitting the phase boundaries.

A major concern in determining adatom interactions by fitting the phase

boundaries is defects in the substrate or the overlayer that limit the long

range order in the latter or provide nucleation sites. As a result, additional

terms enter into the interaction enthalpy. The most important defects are

probably antiphase domain boundaries, and their effect is least well under-

stood. Substrate steps also will be important in such cases where the

diffusional barrier at the edge of the step is sufficiently large to provide

effective isolation between atoms adsorbed on different terraces. Steps

may also provide strong defect sites for preferred adsorption. Mosaic structure
is probably less

/important unless the mosaic size becomes very small. This has been observed

in epitaxially grown thin films(29 ) and may also result when crystal surfaces

cut and polished or cleaved from a bulk crystal are frequently sputtered and

reannealed. (39)

Phase diagrams as a function of coverage and temperature are in many

cases most readily measured by LEED. Defect structures of surfaces and

overlayers can also be determined with this method. Research is just

beginning in these areas, but it appears to be a quite fruitful approach

for determining interactionsbetween adsorbate atoms in a variety of applications.

'Now
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FIGURE CAPTIONS

Figure 1: Simple phase diagrams for binary alloys, AB.

a) Case of preferred A-B bonding, leading to a random

solid solution, a, over most of the temperature-coverage

range. A region of ordered phase, a', shown at low temperatures,

can exist over only a limited concentration range. Transitions

are assumed second-order between a' and %.

b) Case of preferred A-A and B-B bonding, leading to phase

separation. At T=OK , pure A and pure B coexist. At any

finite temperature T', a and a coexist with compositions given by

the intersection of the isotherm T' with the phase boundary.

Transitions from the two-phase to the one-phase region are first-

order. The dashed lines indicate the application of the lever
rule to the determination of the amounts of phases a and present

at any average composition XB at T'.

Figure 2: Schematic diagram of the solution of the Lee-Yang model for a

lattice gas with a net attractive interaction,giving the phase

boundary separating the two-phase from the one-phase regions.

Phase 1 is a lattice vapor; phase 2 is a p(lxl) ordered structure.
0

At T=OK a dense p(xl) solid (x) coexists with an empty "sea"($).
At finite temperatures, the p(lxl) phase contains vacancies and

the'tea." contains atoms. Above the critical temperature, Tc,

only one phase exists.

Figure 3: Schematic illustration of the use of the lattice-gas model with

net attractive interactions but near-neighbor repulsions, leading

to non-p(lxl) structures, a) p(lxl) structure, b) c(2x2) structure.
In b) the new lattice has unit vectors V times the substrate unit

mesh and rotated by 450. The critical coverage referred to this

overlayer lattice remains equal to 0.5, but referred to the sub-

strate lattice it becomes 0 = .25. Thus a two-phase region should
appear centered about e 0.25.



Figure 4: Phase diagram for a c(2x2) overlayer structure with nearest-

neighbor repulsion and next-nearest-neighbor interaction attractive

(upper panel) or zero (lower panel), from Monte Carlo calculations.

The upper panel shows the situation typical for chemisorbed

layers with superlattices. The saturation coverage for the

c(2x2) phase is 0 = 0.5. Real phase diagrams are never

symmetric about the saturation coverage. (After Binder and

Landau, Ref. 23).

Figure 5: Schematic diagram of the potential energy of the surface layer

for a terrace and for a finite-size crystallite. There is a

diffusional barrier at both up and down steps of a terrace, as

well as a potential energy minimum associated with the lower

edge of a step. A potential energy minimum is also possible at

the top of a step. For a finite-size crystallite, the

potential barrier may equal the desorption barrier (solid line),

or it may be lower (dashed line) if the discontinuity between

two crystallite surfaces of a mosaic is small.
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